您好,欢迎来到 - 67学习网 - http://www.67xuexi.com !

数学方法选讲(1)

摘要:7.n(n≥3)名乒乓球选手单打比赛若干场后,任意两个选手已赛过的对手恰好都不完全相同。试证明,总可以从中去掉一名选手,而使余下的选手中,任意两个选手已赛过的对手仍然都不完全相同。数学方法选讲(1)由www.67xuexi.com收集及整理,转载请说明出处www.67xuexi.com www.67xuexi.com 8.在一个8×8的方格棋盘的方格中,填入从1到64这64个数。问:是否一定能够找到两个相邻的方格,它们中所填数的差大于4?三、从整体考虑从整体上来考察研究的对象,不纠缠于问题的各项具体的细节,从而能够拓宽思路,抓住主要矛盾,一举解决问题。9.右图是一个4×4的表格,每个方格中填入了数字数学方法选讲(1)由www.67xuexi.com收集及整理,转载请说明出处www.67xuexi.com www.67xuexi.comb+c+d,c+d+e,d+e+f,e+f+g)。因为a+b+c,c+d+e,e+f+g都不大于M,所以 §2数学方法选讲(2)四、从反面考虑解数学题,需要正确的思
数学方法选讲(1),标签:高一下册数学教案,高中数学教案,http://www.67xuexi.com
7.n(n≥3)名乒乓球选手单打比赛若干场后,任意两个选手已赛过的对手恰好都不完全相同。

  试证明,总可以从中去掉一名选手,而使余下的选手中,任意两个选手已赛过的对手仍然都不完全相同。




数学方法选讲(1)由www.67xuexi.com收集及整理,转载请说明出处www.67xuexi.com
www.67xuexi.com

 

8.在一个8×8的方格棋盘的方格中,填入从1到64这64个数。问:是否一定能够找到两个相邻的方格,它们中所填数的差大于4?

  

三、从整体考虑

  从整体上来考察研究的对象,不纠缠于问题的各项具体的细节,从而能够拓宽思路,抓住主要矛盾,一举解决问题。

9.右图是一个4×4的表格,每个方格中填入了数字


数学方法选讲(1)由www.67xuexi.com收集及整理,转载请说明出处www.67xuexi.com
www.67xuexi.com b+c+d,c+d+e,d+e+f,e+f+g)。

  因为a+b+c,c+d+e,e+f+g都不大于M,所以

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

§2数学方法选讲(2)

四、从反面考虑

  解数学题,需要正确的思路。对于很多数学问题,通常采用正面求解的思路,即从条件出发,求得结论。但是,如果直接从正面不易找到解题思路时,则可改变思维的方向,即从结论入手或从条件及结论的反面进行思考,从而使问题得到解决。

1.某次数学测验一共出了10道题,评分方法如下:

 每答对一题得4分,不答题得0分,答错一题倒扣1分,每个考生预先给10分作为基础分。问:此次测验至多有多少种不同的分数?

 

 


2.一支队伍的人数是5的倍数,且超过1000人。若按每排4人编队,则最后差3人;若按每排3人编队,则最后差2人;若按每排2人编队,则最后差1人。问:这支队伍至少有多少人?

 

 

3.在八边形的8个顶点上是否可以分别记上数1,2,…,8,使得任意三个相邻的顶点上的数的和大于13?

 

 

 

 

4.有一个1000位的数,它由888个1和112个0组成,这个数是否可能是一个平方数?



五、从特殊情况考虑

  对于一个一般性的问题,如果觉得难以入手,那么我们可以

  先考虑它的某些特殊情况,从而获得解决的途径,使问题得以“突破”,这种方法称为特殊化。

  对问题的特殊情况进行研究,一方面是因为研究特殊情况比研究一般情况较为容易;另一方面是因为特殊的情况含有一般性,所以对特殊情况的研究常能揭示问题的结论或启发解决问题的思路,它是探索问题的一种重要方法。

  运用特殊化方法进行探索的过程有两个步骤,即先由一般到特殊,再由特殊到一般。通过第一步骤得到的信息,还要回到一般情况予以解答。

5.如下图,四边形ABCD和EFGH都是正方形,且边长均为2cm。又E点是正方形 ABCD的中心,求两个正方形公共部分(图中阴影部分)的面积S。

 

 

 

6.是否在平面上存在这样的40条直线,它们共有365个交点?

 

 

 

7.如右图,正方体的8个顶点处标注的数字为a,b,c,d,e,

  求(a+b+c+d)-(e+f+g+h)的值。



 

 

8.将n2个互不相等的数排成下表:

a11  a12 a13 … a1n

a21  a22 a23 … a2n

an1 an2 an3 … ann

  先取每行的最大数,得到n个数,其中最小数为x;再取每列的最小数,也得到n个数,其中最大数为y。试比较x和y的大小。

 

 

 

 

六、有序化

  当我们研究的对象是一些数的时候,我们常常将这些数排一个次序,即将它们有序化。有序化的假设,实际上是给题目增加了一个可供使用的条件。

9.将10到40之间的质数填入下图的圆圈中,使得3组由“→”所连的4个数的和相等,如果把和数相等的填法看做同一类填法,请说明一共有多少类填法?并画图表示你的填法。



 

10.有四个互不相等的数,取其中两个数相加,可以得到六个和:24,28,30,32,34,38。求此四数。

 



 

11.互不相等的12个自然数,它们均小于36。有人说,在这些自然数两两相减(大减小)所得到的差中,至少有3个相等。你认为这种说法对吗?为什么?

 

 

 

 

12.有8个重量各不相同的物品,每个物品的重量都是整克数且都不超过15克。小平想以最少的次数用天平称出其中最重的物品。他用了如下的测定法:

  (1)把8个物品分成2组,每组4个,比较这2组的轻重;

  (2)把以上2组中较重的4个再分成2组,即每组2个,再比较它们的轻重;

  (3)把以上2组中较重的分成各1个,取出较重的1个。

  小平称了3次天平都没有平衡,最后便得到一个物品。

  可是实际上得到的是这8个物品当中从重到轻排在第5的物品。

  问:小平找出的这个物品有多重?并求出第二轻的物品重多少克?

 

 

 

课后练习

1.育才小学40名学生参加一次数学竞赛,用15分记分制(即分数为0,1,2,…,15)。全班总分为209分,且相同分数的学生不超过5人。试说明得分超过12分的学生至多有9人。

 

2.今有一角纸币、二角纸币、五角纸币各1张,一元币4张,五元币2张,用这些纸币任意付款,一共可以付出多少种不同数额的款项?

 

3.求在8和98之间(不包括8和98),分母为3的所有最简分数的和。

 

  4.如右图,四边形ABCD的面积为3,E,F为边AB的三等分点,M,N是CD边上的三等分点。求四边形EFNM的面积。

5.直线上分布着1998个点,我们标出以这些点为端点的一切可能线段的中点。问:至少可以得到多少个互不重合的中点?

 

6.假定100个人中的每一个人都知道一个消息,而且这100个消息都不相同。为了使所有的人都知道一切消息,他们一共至少要打多少个电话?

 

7.有4个互不相等的自然数,将它们两两相加,可以得到6个不同的和,其中较小的4个和是64,66,68,70。求这4个数。

 

8.有五个砝码,其中任何四个砝码都可以分成重量相等的两组。问:这五个砝码的重量相等吗?为什么?

 

 

课后练习答案

  1.若得分超过12分的学生至少有10人,则全班的总分至少有

  5×(12+13)+5×(0+1+2+3+4+5)=210(分),

  大于条件209分,产生了矛盾,故得分超过12分的学生至多有9人。

  2.119种。

  解:从最低币值1角到最高币值14元8角,共148个不同的币值。再从中剔除那些不能由这些纸币构成的币值。

  经计算,应该剔除的币值为(i+0.4)元(i=0,1,2,…,14)及(j+0.9)元(j=1,2,3,…,13),一共29种币值。所以,一共可以付出148-29=119(种)不同的币值。

  3.9540。

  

   =2×(8+9+…+97)+(97-8+1)=9540。

  4.1。

  解:先考虑ABCD是长方形的特殊情况,显然此时EFNM的面积是1。下面就一般情况求解。

  连结AC,AM,FM,CF,则

  

  

    

  5.3993个。

  解:为了使计算互不重复,我们取距离最远的两点A,B。先计算以A为左端点的所有线段,除B外有1996条,这些线段的中点有1996个,它们互不重合,且到点A的距离小于AB长度的一半。

  同样,以B为右端点的所有线段,除A外有1996条,这些线段的中点有1996个,它们互不重合,且到点A的距离小于AB长度的一半。

  这两类中点不会重合,加上AB的中点共有1996+1996+1=3993(个),即互不重合的中点不少于3993个。

  另一方面,当这1998个点中每两个相邻点的间隔都相等时,不重合的中点数恰为3993。

  这说明,互不重合的中点数至少为3993个。

  6.198个。

  解:考虑一种特殊的通话过程:先由99人每人打一个电话给A,A再给99人每人打一个电话,这样一共打了198个电话,而且每人都知道了所有的消息。

  下面我们说明这是次数最少的。考虑一种能使所有人知道一切消息的通话过程中的关键性的一次通话,这次通话后,有一个接话人A知道了所有的消息,而在此之前还没有人知道所有的消息。

  除了A以外的99人每人在这个关键性的通话前,必须打出电话一次,否则A不可能知道所有的消息;又这99人每人在这个关键性的通话后,又至少收到一个电话,否则它们不可能知道所有的消息。

  7.30,34,36,38或31,33,35,39。

  解:设4个数为a,b,c,d,且a<b<c<d,则6个和为a+b,a+c,a+d,b+c,b+d,c+d。于是有

  a+b<a+c<a+d<b+d<c+d

  和a+b<a+c<b+c<b+d<c+d。

  分别解这两个方程组,得

  8.相等。

  解:设这五个砝码的重量依次为a≤b≤c≤d≤e。

  去掉e,则有a+d=b+c; ①

  去掉d,则有a+e=b+c。 ②

  比较①②,得d=e。

  去掉a,则有b+e=c+b; ③

  去掉b,则有a+e=c+d。 ④

  比较③④,得a=b。

将a=b代入①得c=d,将d=e代入④得b=c。所以e=b=c=d=e。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

例题答案:

1.  分析:最高的得分为50分,最低的得分为0分。但并不是从0分到50分都能得到。

  从正面考虑计算量较大,故我们从反面考虑,先计算有多少种分数达不到,然后排除达不到的分数就可以了。

  解:最高的得分为50分,最低的得分为0分。在从0分到50分这51个分数中,有49,48,47,44,43,39这6种分数是不能达到的,故此次测验不同的分数至多有51-6=45(种)。

2.  分析:从条件“若按每排4人编队,则最后差3人”的反面来考虑,可理解为“若按每排4人编队,则最后多1人”。同理,按3人、2人排队都可理解为多1人。即总人数被12除余1。这样一来,原题就化为:

  一个5的倍数大于1000,且它被12除余1。问:这个数最小是多少?

  解:是5的倍数且除以12余1的最小自然数是25。因为人数超过1000,[3,4,5]=60,所以最少有

  25+60×17=1045(人)。

3.  解:将八边形的8个顶点上的数依次记为a1,a2,a3,…,a8,则有S=a1+a2+a3+…+a8=1+2+3+…+8=36。

  假设任意3个相邻顶点上的数都大于13,因为顶点上的数都是整数,所以

  a1+a2+a3≥14;

  a2+a3+a4≥14;

  ……

  a7+a8+a1≥14;

  a8+a1+a2≥14。

  将以上 8个不等式相加,得3S≥112,从而 S> 37,这与S=36矛盾。故结论是否定的。

4.解:假设这个数为A,它是自然数a的平方。

  因为A的各位数字之和888是3的倍数,所以a也应是3的倍数。于是a的平方是9的倍数,但888不是9的倍数,这样就产生了矛盾,从而A不可能是平方数。

5.

  分析:我们先考虑正方形EFGH的特殊位置,即它的各边与正方形ABCD的各边对应平行的情况(见上图)。此时,显然有

  得出答案后,这个问题还得回到一般情况下去解决,解决的方法是将一般情况变成特殊情况。

解:自E向AB和AD分别作垂线EN和EM(右图),则有

  S=S△PME+S四边形AMEQ

  又S△PME=S△EQN,故

     S=S△EQN+S四边形AMEQ

      =S正方形AMEN

        

6.  分析与解:先考虑一种特殊的图形:围棋盘。它有38条直线、361个交点。我们就从这种特殊的图形出发,然后进行局部的调整。

  先加上2条对角线,这样就有40条直线了,但交点仍然是361个。再将最右边的1条直线向右平移1段,正好增加了4个交点(见上图)。于是,我们就得到了有365个交点的40条直线。

7. 分析:从这8个数都相等的特殊情况入手,它们满足题目条件,从而得所求值为0。这就启发我们去说明a+b+c+d=e+f+g+h。

解:由已知得

  3a=b+e+d,3b=a+c+f,

  3c=b+d+g,3d=a+c+h,

  推知

  3a+3b+3c+3d=2a+2b+2c+2d+e+f+g+h,

  a+b+c+d=e+f+g+h,

  (a+b+c+d)-(e+f+g+h)=0。

8. 分析:先讨论n=3的情况,任取两表:

  1  3 7  1 2 3

  2 5 6  4 5 6

  8 9 4  7 8 9

  左上表中x=6,y=4;右上表中x=3,y=3。两个表都满足x≥y,所以可以猜想x≥y。

解:设x是第i行第j列的数aij,y是第l行第m列的数alm。考虑x所在的行与y所在的列交叉的那个数,即第i行第m列的数aim。显然有aij≥aim≥alm,当i=l,j=m时等号成立,所以x≥y。

9. 解:10到40之间的8个质数是

  11,13,17,19,23,29,31,37。

  根据题目要求,除去最左边和最右边的2个质数之外,剩下的6个质数在同一行的2个质数的和应分别相等,等于这6个数中最小数(记为a)与最大数(记为b)之和a+b。根据a,b的大小可分为6种情况:

  当a=11,b=29时,无解;

  当a=11,b=31时,有11+31=13+29=19+23,得到如下填法:

  当a=11,b=37时,有11+37=17+31=19+29,得到如下填法:

  当a=13,b=31时,无解;

  当a=13, b=37时,无解;

  当a=17,b=37时,无解。

  所以,共有2类填法。

10. 解:设四个数为a,b,c,d,且a<b<c<d,则六个和为a+b,a+c,a+d,b+c,b+d,c+d,其中a+b最小,a+c次小,c+d最大,b+d次大,a+d与b+c位第三和第四。

  

  分别解这两个方程组,得

       

 11. 解:设这12个自然数从小到大依次为a1,a2,a3,…,a12,且它们两两相减最多只有2个差相等,那么差为1,2,3,4,5的都最多只有2个。从而

  a12-a11,a11-a10,a10-a9,…,a2-a1,

  这11个差之和至少为

  2×(1+2+3+4+5)+6=36,

  但这11个差之和等于a12-a1<36。这一矛盾说明,两两相减的差中,至少有3个相等。

 12. 解:设这8个物品的重量从重到轻依次排列为:

  15≥a1>a2>a3>a4>a5>a6>a7>a8≥1。

  小平找出的这个物品重量为a5,第二轻的物品重量为a7。

  由于a5加上一个比它轻的物品不可能大于两个比a5重的物品重量之和,因而第一次必须筛去3个比a5重的物品。

  这样就有以下四种可能:

    

  先考虑第一种情况。根据①式,a4比a1至少轻3克,a5比a2,a6比a3也都至少轻3克,则a7比a8至少重 10克。根据②式,a5比a4至少轻1克,则a6比a7至少重 18克。与已知矛盾,第一种情况不可能出现。

  按同样的推理方法,可以说明第二种和第三种情况也不可能出现。

  最后,考虑第四种情况。a1比a2至少重1克;a5比a3,a6比a4都至少轻1克,则a7比a8至少重4克。根据④式,a5比a4至少轻4克,则a6比a7至少重5克。这样得到的这8个物品的重量分别为:

  a1=15克, a2=14克, a3=13克, a4=12克

  a5=11克, a6=10克, a7=5克, a8=1克

  因此,小平找出的这个物品重11克,第二轻的物品重5克

 

 

 

 

 

 

 

 

§3集   合

   集合的划分反映了集合与子集之间的关系,这既是一类数学问题,也是数学中的解题策略——分类思想的基础,在近几年来的数学竞赛中经常出现,日益受到重视,本讲主要介绍有关的概念、结论以及处理集合、子集与划分问题的方法。

1.              集合的概念

    集合是一个不定义的概念,集合中的元素有三个特征:

(1)     确定性  设 是一个给定的集合, 是某一具体对象,则 或者是 的元素,或者不是 的元素,两者必居其一,即 仅有一种情况成立。

(2)     互异性  一个给定的集合中的元素是指互不相同的对象,即同一个集合中不应出现同一个元素。

(3)     无序性

2.              集合的表示方法

主要有列举法、描述法、区间法、语言叙述法。常用数集如: 应熟记。

3.              实数的子集与数轴上的点集之间的互相转换,有序实数对的集合与平面上的点集可以互相转换。对于方程、不等式的解集,要注意它们的几何意义。

4.              子集、真子集及相等集

(1)

(2)

(3)

5.              一个 阶集合(即由个元素组成的集合)有 个不同的子集,其中有 -1个非空子集,也有 -1个真子集。

6.              集合的交、并、补运算

={ }; ={ }

}

要掌握有关集合的几个运算律:

(1)     交换律

(2)     结合律 )=(

           )=( )

(3)     分配律  )=(

             )= (

(4)0—1律   

    (5)等幂律 

(6)吸收律  ( )= )=

(7)求补律  CIA= CIA=

(8)反演律 

7.              有限集合所含元素个数的几个简单性质

    设 表示集合 所含元素的个数,(1) ,

    当 时,

(2)

例题讲解

元素与集合的关系

1.           设 ={ | , },求证:(1) ( );

(2)

 

 

 

 

 

 

2.           以某些整数为元素的集合 具有下列性质:① 中的元素有正数,有负数;

中的元素有奇数,有偶数;③-1 ;④若 ,则 试判断实数0和2与集合 的关系。

 

 

 

 

 

 

 

3.           设 为满足下列条件的有理数的集合:①若 ,则 +

;②对任一个有理数 ,三个关系 ,- =0有且仅有一个成立。证明: 是由全体正有理数组成的集合。

 

 

 

 

 

 

 

两个集合之间的关系

在两个集合之间的关系中,我们感兴趣的是“子集”、“真子集”、“相等”这三种特殊关系。这些关系是通过元素与集合的关系来揭示的,因而判断两个集合之间的关系通常可从判断元素与这两个集合的关系入手。

4.           设函数 ,集合

(1) 证明:

(2) 当 时,求

(3) 当 只有一个元素时,求证:

 

 

 

 

5. 为非空集合,对于1,2,3的任意一个排列 ,若 ,则

(1) 证明:三个集合中至少有两个相等。

(2) 三个集合中是否可能有两个集无公共元素?

 

 

 

 

6.已知集合:

(1) 当 取何值时, 为含有两个元素的集合?

(2) 当 取何值时, 为含有三个元素的集合?

 

 

 

 

7.设 ≥15, 都是{1,2,3,…, }真子集, ,且

={1,2,3,…, }。证明: 或者 中必有两个不同数的和为完全平方数。

 

 

 

 

 

课后练习

1.下列八个关系式:①{0}=  ② =0  ③   { } ④ { }⑤{0}  ⑥0  ⑦ {0}   ⑧ { } 其中正确的个数         (   )

(A)4          (B)5          (C)6        (D)7

2.设A、B是全集U的两个子集,且A B,则下列式子成立的是        (   )

(A)CUA CUB    (B)CUA CUB=U   (C)A CUB=   (D)CUA B=

3.已知M= ,且 ,设 ,则                              (    )

   (A)M        (B)N          (C)P         (D)

4.设集合 ,则           (    )

(A)     (B)      (C)      (D)

5.设M={1,2,3,…,1995},A是M的子集且满足条件: 当x∈A时,15x A,则A中元素的个数最多是_______________.

6.集合A,B的并集A∪B={a1,a2,a3},当且仅当A≠B时,(A,B)与(B,A)视为不同的对,则这样的(A,B)对的个数有_________________.

7.若非空集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},则能使A A∩B成立的a的取值范围是_______________.

8.若A={x|0≤x2+ax+5≤4}为单元素集合,则实数a的值为___________________.

9.设A={n|100≤n≤600,n∈N},则集合A中被7除余2且不能被57整除的数的个数为______________.

10.己知集合A={x|x=f(x)},B={x|x=f(f(x))},其中f(x)=x2+ax+b (a,b∈R),

证明:(1)A B   (2)若A只含有一个元素,则A=B .

 

 

11.集合A={(x,y },集合B={(x,y ,且0 },

又A ,求实数m的取值范围.

课后练习答案

1-4  C  C  B  A

5.解:由于1995=15´133,所以,只要n>133,就有15n>1995.故取出所有大于133而不超过1995的整数. 由于这时己取出了15´9=135, … 15´133=1995. 故9至133的整数都不能再取,还可取1至8这8个数,即共取出1995—133+8=1870个数, 这说明所求数≥1870。

另一方面,把k与15k配对,(k不是15的倍数,且1≤k≤133)共得133—8=125对,每对数中至多能取1个数为A的元素,这说明所求数≤1870,综上可知应填1870

6.解:A=φ时,有1种可能;A为一元集时,B必须含有其余2元,共有6种可能;A为二元集时,B必须含有另一元.共有12种可能;A为三元集时,B可为其任一子集.共8种可能.故共有1+6+12+8=27个.

7.解:由A非空知2a+1≤3a-5,故a≥6. 由AÌAÇB知AÌB. 即3≤2a+1且3a-5≤22, 解之,得1≤a≤9. 于是知6≤a≤9

8.解:由 .若 ,则A有无数个元,若 ,则A为空集,只有当 时,A为单元素集 .所以

9.解:被7除余2的数可写为7k+2. 由100≤7k+2≤600.知14≤k≤85. 又若某个k使7k+2能被57整除,则可设7k+2=57n. 即 . 即n-2应为7的倍数. 设n=7m+2代入,得k=57m+16. ∴14≤57m+16≤85. m=0,1.于是所求的个数为85-(14-1)-2=70

10.证明:(1)

(2)设A={c},即二次方程f(x)-x=0有惟一解c,即c为 f(x)-x=0的重根.

   ∴ f(x)-x=(x-c)2  即f(x)=(x-c)2+x,于是f(f(x))=(f(x)-c)2+f(x),

f(f(x))-x=(f(x)-c)2+f(x)-x=[(x-c)2+x-c]2+(x-c)2=0

f(f(x))=x也只有惟一解x=c,即B={c}. 所以A=B

11.解:由

 由数形结合得:

解得:

 

 

 

 

 

例题答案:

1.分析:如果集合 ={ | 具有性质 },那么判断对象 是否是集合 的元素的基本方法就是检验 是否具有性质

解:(1)∵ , ,故

(2)假设 ,则存在 ,使

               (*)

由于 具有相同的奇偶性,所以(*)式左边有且仅有两种可能:奇数或4的倍数,另一方面,(*)式右边只能被4除余2的数,故(*)式不能成立。由此,

2.解:由④若 ,则 可知,若 ,则

(1) 由①可设 ,且 >0, <0,则- =| |   (| |∈ )

,- ,由④,0=(- )+

(2)2 。若2∈ ,则 中的负数全为偶数,不然的话,当-( )∈ )时,-1=(- )+ ,与③矛盾。于是,由②知 中必有正奇数。设 ,我们取适当正整数 ,使

,则负奇数 。前后矛盾。

3.证明:设任意的 ≠0,由②知 ,或- 之一成立。再由①,若 ,则 ;若- ,则 。总之,

=1,则1∈ 。再由①,2=1+1∈ ,3=1+2∈ ,…,可知全体正整数都属于

,由① ,又由前证知 ,所以 。因此, 含有全体正有理数。

再由①知,0及全体负有理数不属于 。即 是由全体正有理数组成的集合。

4.解:(1)设任意 ,则 .而

,所以 .

(2) 因 ,所以

      解得

。由

解得 

={

5.证明:(1)若 ,则

所以每个集合中均有非负元素。

当三个集合中的元素都为零时,命题显然成立。

否则,设 中的最小正元素为 ,不妨设 ,设 中最小的非负元素,不妨设

>0,则0≤ ,与 的取法矛盾。所以 =0。

任取 因0∈ ,故 -0= 。所以 ,同理

所以 =

(3) 可能。例如 = ={奇数}, ={偶数}显然满足条件, 都无公共元素。

6.解: = 分别为方程组

(Ⅰ)         (Ⅱ)

的解集。由(Ⅰ)解得( )=(0,1)=( );由(Ⅱ)解得

)=(1,0),(

(1) 使 恰有两个元素的情况只有两种可能:

              ②

由①解得 =0;由②解得 =1。

=0或1时, 恰有两个元素。

(2) 使 恰有三个元素的情况是: =  

解得 ,故当 时, 恰有三个元素。

7.证明:由题设,{1,2,3,…, }的任何元素必属于且只属于它的真子集 之一。

     假设结论不真,则存在如题设的{1,2,3,…, }的真子集 ,使得无论是 还是 中的任两个不同的数的和都不是完全平方数。

     不妨设1∈ ,则3 ,否则1+3= ,与假设矛盾,所以3∈ 。同样6 ,所以6∈ ,这时10 ,,即10∈ 。因 ≥15,而15或者在 中,或者在 中,但当15∈ 时,因1∈ ,1+15= ,矛盾;当15∈ 时,因10∈ ,于是有10+15= ,仍然矛盾。因此假设不真。即结论成立。


数学方法选讲(1)由www.67xuexi.com收集及整理,转载请说明出处www.67xuexi.com

上一页  [1] [2] 


Tag:高一数学教案高一下册数学教案,高中数学教案免费教案 - 数学教案 - 高一数学教案