您好,欢迎来到 - 67学习网 - http://www.67xuexi.com !

对数函数

摘要:(1) 指数函数对数函数由www.67xuexi.com收集及整理,转载请说明出处www.67xuexi.comwww.67xuexi.com和 的图像要尽量准确(关键点的位置,图像的变化趋势等).(2) 画出直线 .(3) 的图像在翻折时先将特殊点 对称点 找到,变化趋势由靠近 轴对称为逐渐靠近 轴,而 的图像在翻折时可提示学生分两段翻折,在 左侧的先翻,然后再翻在 右侧的部分.学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出 和 的图像.(此时同底的指数函数和对数函数画在同一坐标系内)如图: 2. 草图.教师画完图后再利用投影仪将 和 的图像画在同一坐标系内,如图: 然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)3. 性质(1) 定义域: (2) 值域: 由以上两条可说明图像位于 轴的右侧.(3) 截距:令 得 ,即在 轴上的截距为1,与 轴无交点即以 轴为渐近线.(4) 奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于 轴对称.(5) 单调性:与
对数函数,标签:高一下册数学教案,高中数学教案,http://www.67xuexi.com

  (1) 指数函数


对数函数由www.67xuexi.com收集及整理,转载请说明出处www.67xuexi.com
www.67xuexi.com 和 的图像要尽量准确(关键点的位置,图像的变化趋势等).

  (2) 画出直线

  (3) 的图像在翻折时先将特殊点 对称点 找到,变化趋势由靠近 轴对称为逐渐靠近 轴,而 的图像在翻折时可提示学生分两段翻折,在 左侧的先翻,然后再翻在 右侧的部分.

  学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出

的图像.(此时同底的指数函数和对数函数画在同一坐标系内)如图:

 

2. 草图.

  教师画完图后再利用投影仪将 的图像画在同一坐标系内,如图:

  然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)

3. 性质

  (1) 定义域:

  (2) 值域:

  由以上两条可说明图像位于 轴的右侧.

  (3) 截距:令 ,即在 轴上的截距为1,与 轴无交点即以 轴为渐近线.

  (4) 奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于 轴对称.

  (5) 单调性:与 有关.当 时,在 上是增函数.即图像是上升的

                 当 时,在 上是减函数,即图像是下降的.

  之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:

  当 时,有 ;当 时,有

  学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来.

  最后教师在总结时,强调记住性质的关键在于要脑中有图.且应将其性质与指数函数的性质对比记忆.(特别强调它们单调性的一致性)

  对图像和性质有了一定的了解后,一起来看看它们的应用.

三.简单应用  (板书)

1. 研究相关函数的性质

例1.  求下列函数的定义域:

  (1)      (2)    (3)

先由学生依次列出相应的不等式,其中特别要注意对数中真数和底数的条件限制.

2. 利用单调性比较大小 (板书)

例2.  比较下列各组数的大小

  (1) ;      (2) ;  

  (3) ;           (4)

  让学生先说出各组数的特征即它们的底数相同,故可以构造对数函数利用单调性来比大小.最后让学生以其中一组为例写出详细的比较过程.

三.巩固练习

练习:若 ,求 的取值范围.

四.小结

五.作业 略

板书设计

2.8对数函数

一. 概念                                              

  1.  定义   2.认识

二.图像与性质                                  

  1.作图方法

  2.草图 

   图1    图2  

  3.性质                        

  (1)    定义域(2)值域(3)截距(4)奇偶性(5)单调性

三.应用

  1.相关函数的研究

  例1    例2

  练习

探究活动

  (1) 已知 是函数 的反函数,且 都有意义.

  ① 求

  ② 试比较 与4 的大小,并说明理由.

  (2) 设常数 则当 满足什么关系时, 的解集为

答案:

(1) ①

  ②当 时, <4 ;当 时, 4

(2)




对数函数由www.67xuexi.com收集及整理,转载请说明出处www.67xuexi.com

上一页  [1] [2] 


Tag:高一数学教案高一下册数学教案,高中数学教案免费教案 - 数学教案 - 高一数学教案