[04-02 21:05:23] 来源:http://www.67xuexi.com 高一数学教案 阅读:850次
对于数列②
对于数列③
共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。
师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。
一、定义:
等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。
如:上述3个数列都是等差数列,它们的公差依次是1,-2,
二、等差数列的通项公式
师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列
若将这n-1个等式相加,则可得:
……
由此可得:
师:看来,若已知一数列为等差数列,则只要知其首项
如数列①
数列②:
数列③:
由上述关系还可得:
即:
则:
如:
三、例题讲解
例1:(1)求等差数列8,5,2…的第20项
(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?
解:(1)由
n=20,得
(2)由
得数列通项公式为:
由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。
(Ⅲ)课堂练习
生:(口答)课本P118练习3
(书面练习)课本P117练习1
师:组织学生自评练习(同桌讨论)
(Ⅳ)课时小结
师:本节主要内容为:①等差数列定义。
即
②等差数列通项公式
推导出公式:
(V)课后作业
一、课本P118习题3.2 1,2
二、1.预习内容:课本P116例2—P
2.预习提纲:①如何应用等差数列的定义及通项公式解决一些相关问题?
②等差数列有哪些性质?
板书设计
课题 | ||
一、定义 1. (n≥2) 一、通项公式 2. |
公式推导过程 |
例题 |
教学后记