您好,欢迎来到 - 67学习网 - http://www.67xuexi.com !

初一数学专项练习:因式分解

摘要:所以,1-8 a3=(1-2a)(1+2a+4a2)4.解:原式= [(a+b)x]2-2(a+b)(a-b)xy+[(a-b)y]2=(ax+bx-ay+by)2[提示:将(a+b)x和(a-b)y视为 一个整体。5.解:原式=( x2+1)( x2-1)=( x2+1)(x+1)(x-1)提示:许多同学分解到(x2+1)( x2-1)就不再分解了,因式分解必须分解到不能再分解为止。6.解:原式=-(a2-2ab+b2-4)=-(a-b+2)(a-b-2)提示:如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。但也不能见负号就先“提”,要对全题进行分析。防止出现诸如-9x2+4y2=(-3x)2-(2y)2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的错误。上一页 [1] [2]
初一数学专项练习:因式分解,标签:初一数学学习方法,初一学习计划,http://www.67xuexi.com

  所以,1-8 a3=(1-2a)(1+2a+4a2)

  4.解:原式= [(a+b)x]2-2(a+b)(a-b)xy+[(a-b)y]2=(ax+bx-ay+by)2[

  提示:将(a+b)x和(a-b)y视为 一个整体。

  5.解:原式=( x2+1)( x2-1)

  =( x2+1)(x+1)(x-1)

  提示:许多同学分解到(x2+1)( x2-1)就不再分解了,因式分解必须分解到不能再分解为止。

  6.解:原式=-(a2-2ab+b2-4)

  =-(a-b+2)(a-b-2)

  提示:如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。但也不能见负号就先“提”,要对全题进行分析。防止出现诸如-9x2+4y2=(-3x)2-(2y)2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的错误。

上一页  [1] [2] 


Tag:初一数学初一数学学习方法,初一学习计划初中教育 - 初一学习 - 初一数学